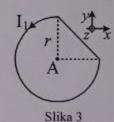
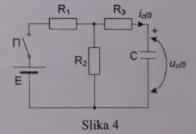

PISMENI ISPIT IZ ELEKTROTEHNIKE 3. jul 2018.


1. Na Slici I prikazan je pločasti kondenzator, priključen na napon $U=40\,\mathrm{V}$. Rastojanje između ploča, između kojih je vazduh, iznosi $a=2\,\mathrm{cm}$. Izračunati i skicirati <u>vektor</u> električnog polja između ploča kondenzatora. Ako se između ploča postavi veoma mala kuglica, naelektrisana sa $Q=-15\mu\mathrm{C}$, izračunati i skicirati <u>vektor</u> sile koja deluje na kuglicu. (10 poena)

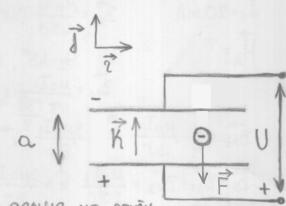
- 2. U kolu na Slici 2 poznato je: $R_1=R_2=R_3=R=10~\Omega$, $I_{g1}=3~{\rm A}$, $E_2=60~{\rm V}$, $I_{g3}=5~{\rm A}$.
- a) Primenom metode superpozicije odrediti napon U_{AD} (15 poena)
- b) Primenom Tevenenove teoreme odrediti intenzitet struje I_{R1} kroz otpornik R_1 . (15 poena)


3. Na Slici 3 prikazana je kontura koja se sastoji iz kružnog luka, koji predstavlja 3/4 kružnice poluprečnika $r = 10\,\mathrm{cm}$, i pravolinijskog provodinka, kroz koju protiče struje intenziteta $I_1 = 20\,\mathrm{mA}$ u označenom smeru. Kontura se nalazi u vazduhu. Odrediti i nacrtati rezultujući vektor jačine magnetnog polja u tački A. (15 poena)

4. U kolu na Slici 4 poznate su vrednosti elemenata: E, $R_1 = 4R$ $R_2 = 2R$, $R_3 = R$ i C. Prekidač Π je zatvoren i u kolu je uspostavljeno stacionarno stanje. U trenutku t = 0, prekidač se otvara.

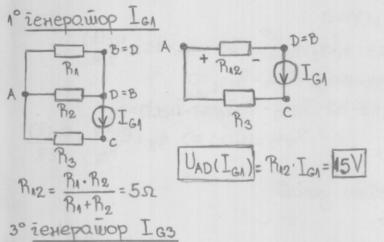
a) Odrediti izraz za napon i struju kondenzatora nakon otvaranja prekidača i nacrtati odgovarajuće vremenske dijagrame. (15 poena)
b) Odrediti vrednost napona na otporniku R_3 u trenutku $t_1 = 6RC$.

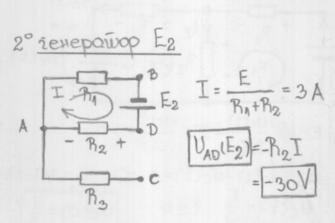
(5 poena)

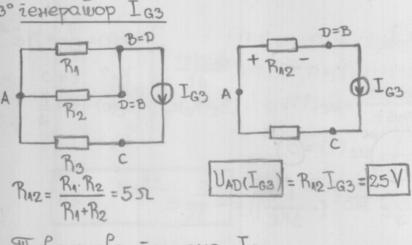


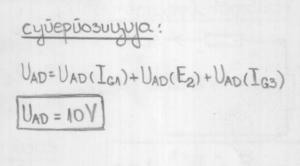
5. U prostom kolu naizmenične struje, potrošač je priključen na naponski izvor parametara U = 300 V, $f = \frac{100}{\pi} \text{Hz}$. Reaktivna snaga i faktor snage potrošača iznose Q = 1.8 kVAr i $\cos \varphi = 0.8$.

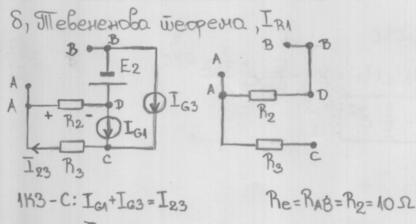
a) Odrediti efektivnu vrednost struje potrošača i njegovu kompleksnu impedansu. (15 poena)

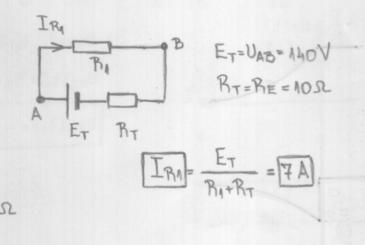

 b) Odrediti kapacitivnost kondenzatora, koji je potrebno vezati paralelno potrošaču, tako da se postigne ukupan faktor snage jednak 1. (10 poena)

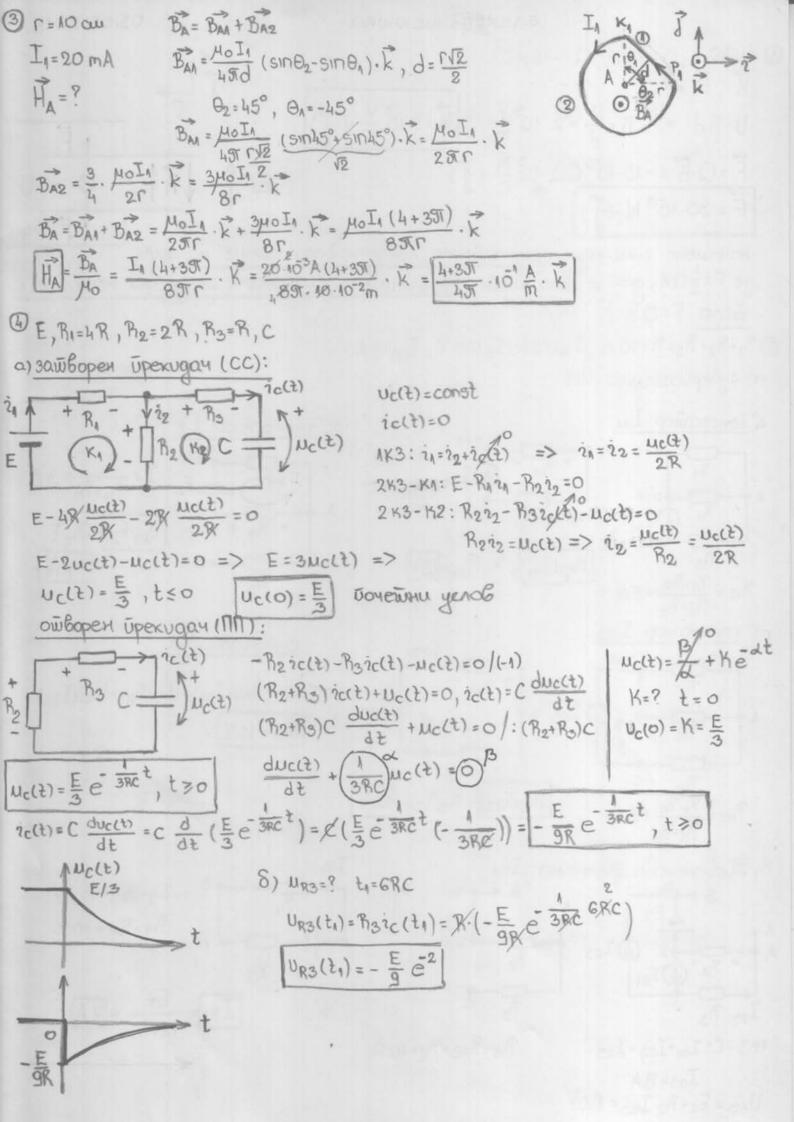

①
$$U=40V$$
, $\alpha=2$ cm, $Q=-15\mu C$
 \vec{K} , $\vec{F}=?$
 $U=Kd \Rightarrow K=\frac{U}{d}=2.10^{3} \frac{V}{m}$, $\vec{K}=2.10^{3} \frac{V}{m}$. (\vec{J})
 $\vec{F}=Q.\vec{K}=-15.10^{6}C.2.10^{3} \frac{N}{C}$. (\vec{J})
 $\vec{F}=30.10^{3} N.(-\vec{J})$




найомена: сила којом једна йлоча кондензайора делује на другу је $F = \frac{1}{2}QK$, док је сила којом обе йлоче кондензайора делују на неко шреће шело F = QK!


2 R1=R2=R3=R=10s2, IG1=3A, E2=60V, IG3=5A
a) cyūepūosuyuja, VAD





I23=8A UAB = E2+R2 I23 = 140V

3 U=300V a) sin24+co34=1 P=100/ST HZ Sin 4 = ± 1-0054 = ±0,6 Q1=1,8kYAr Q>0 => Úpememno ungykmubou úompowa4 => 4>0 CO34=0,8 Siny = +0,6 I, \(\bar{\pi} = ?\) siny= = > S = Q = 3 kVA cosy= => P= S.cosy = 2,4 kW S=UI => []= S = 10 A $P = RI^2 = > R = \frac{P}{T^2} = 24\Omega$, $Q = XI^2 = > X = \frac{Q}{T^2} = 18\Omega$, Z = R + jX = [24 + j18]8) cos qu=1 => ,qu=0 кондензашор: 4c=- 17, Zc= 1Xc1, Xc=- 10C Q=1,8kVAr Qc=UIcsin4c => Ic= Qc = -1800 VAr = 6A P=2,4kW f.o. $I_c=\frac{U}{\chi_c} \Rightarrow \chi_c=\frac{U}{I}=50\Omega$, $w=2\pi f=200\frac{rod}{s}$ $Z_{c=|X_c|=1-\frac{1}{|W_c|}=\frac{1$ Vac=-1,8 KVAr